A novel convolutional neural network based dysphonic voice detection algorithm using chromagram
نویسندگان
چکیده
<span>This paper presents a convolutional neural network (CNN) based non-invasive pathological voice detection algorithm using signal processing approach. The proposed extracts an acoustic feature, called chromagram, from samples and applies this feature to the input of CNN for classification. main advantage chromagram is that it can mimic way humans perceive pitch in sounds hence be considered useful detect dysphonic voices, as generated varies depending on conditions. simulation results show classification accuracy 85% achieved with chromagram. A comparison performances those other related works also presented.</span>
منابع مشابه
EMG-based wrist gesture recognition using a convolutional neural network
Background: Deep learning has revolutionized artificial intelligence and has transformed many fields. It allows processing high-dimensional data (such as signals or images) without the need for feature engineering. The aim of this research is to develop a deep learning-based system to decode motor intent from electromyogram (EMG) signals. Methods: A myoelectric system based on convolutional ne...
متن کاملDouble-Star Detection Using Convolutional Neural Network in Atmospheric Turbulence
In this paper, we investigate the usage of machine learning in the detection and recognition of double stars. To do this, numerous images including one star and double stars are simulated. Then, 100 terms of Zernike expansion with random coefficients are considered as aberrations to impose on the aforementioned images. Also, a telescope with a specific aperture is simulated. In this work, two k...
متن کاملA Radon-based Convolutional Neural Network for Medical Image Retrieval
Image classification and retrieval systems have gained more attention because of easier access to high-tech medical imaging. However, the lack of availability of large-scaled balanced labelled data in medicine is still a challenge. Simplicity, practicality, efficiency, and effectiveness are the main targets in medical domain. To achieve these goals, Radon transformation, which is a well-known t...
متن کاملImage Manipulation Detection using Convolutional Neural Network
Using various methods, an image manipulation can be done not only by the image manipulation itself, but also by the criminals of counterfeiters for the purpose of counterfeiting. Digital forensic techniques are needed to detect the tampering and manipulation of images for such illegal purposes. In this paper, we present an image manipulation detection algorithm using deep learning technology, w...
متن کاملAutomated Edge Detection Using Convolutional Neural Network
The edge detection on the images is so important for image processing. It is used in a various fields of applications ranging from real-time video surveillance and traffic management to medical imaging applications. Currently, there is not a single edge detector that has both efficiency and reliability. Traditional differential filter-based algorithms have the advantage of theoretical strictnes...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Power Electronics and Drive Systems
سال: 2022
ISSN: ['2722-2578', '2722-256X']
DOI: https://doi.org/10.11591/ijece.v12i5.pp5511-5518